УДК 532.526.4

МОДЕЛИРОВАНИЕ ТУРБУЛЕНТНОГО ТЕПЛООБМЕНА В НЕСТАЦИОНАРНОМ ПОГРАНИЧНОМ СЛОЕ С ПРОДОЛЬНЫМИ ГРАДИЕНТАМИ ДАВЛЕНИЯ

В.А. Алексин

Институт проблем механики им. А.Ю. Ишлинского РАН

В условиях высокой интенсивности турбулентности набегающего потока и воздействия продольного градиента давления на основе двухпараметрических моделей турбулентности исследованы динамические и тепловые характеристики стационарных и нестационарных пристенных течений в пограничных слоях. С применением модифицированной *К-є*-модели изучено влияние параметров набегающего потока на развитие динамических и тепловых процессов в стационарном развитом турбулентном пограничном слое с положительным градиентом давления. Исследована его структура, проведено сопоставление расчетных профилей скорости и кинетической энергии турбулентности с экспериментальными данными в предотрывной области. Дается анализ совместного воздействия гармонических колебаний во времени скорости внешнего невязкого потока и его турбулентности, а так же положительного градиента давления на развитие нестационарных характеристик течения и теплопереноса в пограничных слоях.

1. ВВЕДЕНИЕ

Высокая интенсивность турбулентности может в значительной мере воздействовать на величину теплопередачи к обтекаемому телу в областях не только с турбулентным режимом, но с ламинарным и переходным. При обтекании криволинейных профилей переменность градиента давления вдоль поверхности влияет также на изменение локальных параметров турбулентности на внешней границе, которое в итоге может сказываться на локальных характеристиках трения и теплообмена на поверхности.

Для расчетов переходной структуры течения и теплообмена в пограничном слое с высокой интенсивностью турбулентности введение дополнительных эмпирических функций в коэффициенты модельных уравнений позволило получить численные результаты [1], согласующиеся с экспериментальными данными [2, 3]. Возможность применения квазистационарной модели при высокой степени турбулентности набегающего потока и гармонических колебаниях внешней скорости показана в [4, 5] для моделирования характеристик течения и теплопереноса в нестационарном пограничном слое в условиях нулевого и отрицательного градиентов давления.

При торможении потока под воздействием положительного градиента давления происходит перестройка структуры развитого турбулентного пограничного слоя, характеризующаяся качественным изменением профилей скорости, трения и энергии турбулентности. Интенсивность этой перестройки определяется параметрами набегающего потока и распределением градиента давления вдоль поверхности. В рамках нестационарного пограничного слоя из-за пониженного значения коэффициента трения при наложении гармонических колебаний внешней скорости возможно образование тонких зон возвратного потока. Для таких течений необходимо обоснование адекватности вводимых моделей турбулентности, которое подтверждается сопоставлением расчетных результатов с экспериментальными данными.

В настоящем исследование на основе модифицированной К-є-модели изучается

влияние параметров набегающего потока с высокой интенсивностью турбулентности на развитие динамических и тепловых процессов в стационарном развитом турбулентном пограничном слое в условиях положительного градиента давления. Дается анализ совместного воздействия гармонических колебаний во времени скорости внешнего невязкого потока на развитие нестационарных характеристик течения и теплопереноса в пограничных слоях.

2. ПОСТАНОВКА ЗАДАЧИ

Система уравнений для осредненных характеристик нестационарного двумерного турбулентного пограничного слоя в сжимаемом однородном потоке совершенного газа совместно с начальными и граничными условиями дана в [4, 5]. Модифицированные варианты моделей турбулентности позволяют непрерывно рассчитывать всю область течения от ламинарного до турбулентного режима при гармоническом распределении во времени внешней скорости набегающего потока

$$u_e(t,\xi) = u_0(\xi)(1 + A_0 \cos \omega t)$$

Для замыкания системы уравнений используются K- ε -модели турбулентности. При этом задаются два параметра турбулентности - степень Tu_{∞} и масштаб L_{∞} (или $\varepsilon'_{\infty} = \varepsilon_{\infty} D/V_{\infty}^{3}$) турбулентности в набегающем потоке.

Применение турбулентных коэффициентов вязкости и теплопроводности, так же как гипотезы Буссинеска о градиентном механизме переноса для турбулентного напряжения (- $\rho < u'v' >$) и вид закона Фурье для турбулентного теплового потока(- $\rho < h'v' >$), позволяет представить полное напряжение трения τ и полный тепловой поток q

$$\tau = \mu \frac{\partial u}{\partial \zeta} - \rho \langle u'v' \rangle = \mu_{\Sigma} \frac{\partial u}{\partial \zeta} , \qquad q = \frac{\lambda}{c_{p}} \frac{\partial h}{\partial \zeta} - \rho \langle h'v' \rangle = \frac{\lambda_{\Sigma}}{c_{p}} \frac{\partial h}{\partial \zeta}$$
(1)
$$\tau_{t} = -\rho \langle u'v' \rangle = \mu_{t} \frac{\partial u}{\partial \zeta} , \qquad q_{t} = -\rho \langle h'v' \rangle = \frac{\lambda_{t}}{c_{p}} \frac{\partial h}{\partial \zeta}$$
$$\mu_{\Sigma} = \mu + \mu_{t}, \ \lambda_{\Sigma} = \lambda + \lambda_{t}$$

Здесь μ_{Σ} , λ_{Σ} -эффективные коэффициенты Введение в (1) ламинарного и турбулентного чисел Прандтля $\Pr = \mu c_p / \lambda$, $\Pr_t = \mu_t c_p / \lambda_t$ дает возможность выразить λ/c_p и λ_t/c_p через отношения μ / \Pr и μ_t / \Pr_t .

Уравнения для кинетическая энергия турбулентности K и изотропной части скорости ее диссипации $\varepsilon = \varepsilon_k - D$ нестационарного двумерного пограничного слоя в системе координат ξ , ζ имеют вид

$$\frac{\partial K}{\partial t} + u \frac{\partial K}{\partial \xi} + v \frac{\partial K}{\partial \zeta} = \frac{1}{\rho} \frac{\partial}{\partial \zeta} \left[\mu_{\Sigma,k} \frac{\partial K}{\partial \zeta} \right] + \frac{P_k}{\rho} - \varepsilon_k$$
(2)

$$\frac{\partial \varepsilon}{\partial t} + u \frac{\partial \varepsilon}{\partial \xi} + v \frac{\partial \varepsilon}{\partial \zeta} = \frac{1}{\rho} \frac{\partial}{\partial \zeta} \left[\mu_{\Sigma,\varepsilon} \frac{\partial \varepsilon}{\partial \zeta} \right] + \frac{P_{\varepsilon}}{\rho} - \left(D_{\varepsilon} + E \right)$$
(3)

$$\mu_{\Sigma,k} = \mu + \frac{\mu_t}{\sigma_k} , \quad \mu_{\Sigma,\varepsilon} = \mu + \frac{\mu_t}{\sigma_\varepsilon}$$
(4)

Здесь $\mu_{\Sigma,k}$, $\mu_{\Sigma,\epsilon}$ -коэффициенты полных (эффективных) вязкостей; σ_k , σ_{ϵ} - числа

Прандтля для K и є; члены P_k , P_{ε} описывают процессы генерации в уравнениях для K и скорости диссипации є в явной форме; D_{ε} - диссипативное слагаемое в уравнении для є; члены D, E выражают влияние вязкости на диссипативные эффекты вблизи стенки и в областях с малыми локальными числами Рейнольдса в уравнениях для K и ε , как и функции f_2 f_4 - в членах D_{ε} , E.

Коэффициент турбулентной вязкости v_t определяется по второй формуле Прандтля-Колмогорова с демпфирующей функцией f_{μ}

$$\mathbf{v}_t = c_{\mu} f_{\mu} \frac{K^2}{\varepsilon}$$

В варианте модели [6] f_{μ} - функция координаты ζ^+ и $c_3^*(\eta_*)$ [1]

$$f_{\mu} = 1 - exp(-c_3^*\zeta^+), \quad \zeta^+ = \frac{u_*\zeta}{v}, \quad u_* = \sqrt{\frac{\tau_w}{\rho}}$$
 (5)

Модификация этой модели (1)-(4) предполагает замену постоянной с₃ в (5) функцией

$$c_{3}^{*} = \frac{C_{0}'}{\eta_{*}^{\alpha}}, \ C_{0}' = c_{3}\eta_{*}^{\alpha}(A_{0}'), \ \alpha = 0.25$$

Функция c_3^* связана с толщиной вязкого подслоя η_* , заданной в форме зависимости от числа Re_{θ} и двух параметров A_0' , B_0' , определяемых параметрами набегающего потока и его турбулентности [1], что позволило учесть возможность управления местоположением и протяженностью зоны перехода. Здесь применена эмпирическая зависимость A_0' от Tu_{∞} , полученная для опытных данных [7] и преобразованная в [1], а B_0' =const. Введение в демпфирующий множитель функции $c_3^*(\eta_*)$ позволило смоделировать изменение толщины вязкого подслоя в переходной области.

На поверхности задаются граничные условия: $\zeta = 0, K = 0, \varepsilon = 0$.

Для решения уравнений нестационарного турбулентного пограничного слоя развит численный метод расчета, основанный на неявной конечно-разностной схеме четвертого порядка точности по нормали к поверхности. Метод был распространен на решения двумерных нестационарных задач пограничного слоя с периодическими распределениями во времени внешней скорости потока для широкого диапазона амплитуд колебаний [4, 5].

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Для анализа влияния параметров колеблющегося турбулизированного набегающего потока предварительно численно решается стационарная задача о течении и теплообмене на поверхности с нулевым и положительными значениями градиентами давления при развитом турбулентном режиме.

На начальном участке течения в условиях высокого уровня турбулентности Tu_{∞} и почти нулевого градиента давления режим полагается псевдоламинарным с дальнейшим переходом к турбулентному. Вниз по течению вдоль стенки для чисел $Re_{\xi 0}>10^6$ в пограничном слое в области развитого турбулентного режима продольный градиент давления задается переменным в соответствии с экспериментальными данными [8, 9]. Для проверки адекватности моделирования параметров турбулентности проведено сравнение расчетных и экспериментальных профилей скорости и энергии

турбулентности в области близкой к отрыву (рис. 1, а и б).

Рис.1. Профили скорости $u^+(\zeta^+)$ (*a*): *I*- $u^+ = \zeta^+$; *2*- $u^+ = 5.81 \lg \zeta^+ + 5.1$; *3*, *4* – $\xi = 2.26$, 3.40 (м) расченые данные; профили энергии турбулентности $K = K/u_e^2$ от ζ (*б*) в конце участка торможения потока: *I*, *3* – $\xi = 2.89$; *2*, *4*- 3.39 (м); *I*, *2* – расчетные данные, *3*, *4* – экспериментальные

Расчетный профиль скорости в начальной области торможения потока располагается ближе к логарифмическому профилю. Ближе к отрыву происходит его отклонение вниз от распределения закона стенки и резкое возрастание во внешней, и он лучше описывается зависимостью от $\zeta^{1/2}$. Постепенно увеличивающийся вниз по потоку градиент давления воздействует на турбулентное течение в пограничном слое, перераспределяя при этом характеристики турбулентности внутри него, в частности, кинетическую энергию $K'(\zeta) = K/u_e^2$. Изменения свойств профиля K' хорошо прослеживаются в зависимости от физической координаты ζ .

В области развитого турбулентного с ростом $\text{Re}_{\xi 0}$ при дальнейшем воздействии возрастающего положительного градиента давления происходит последующее сначала медленное, но затем с нарастающим темпом уменьшение C_{f0} вниз по потоку (рис. 2, *a*). При этом в области близкой к отрыву расчетные величины падают с тем же темпом, что и экспериментальные данные.

Рис.2. Зависимости $C_{f0}(\text{Re}_{\xi 0})$ (*a*): *1*, 2 – эмпирические для ламинарного и турбулентного режимов при нулевом градиенте давления; *3*, *4* - расчетные при Tu_∞ =2, 4.86%; *5* – экспериментальные данные [6, 7]; и St(Re_{ξ0}) (*б*): *3*, *4* - расчетные при Tu_∞ =2, 4.86%, $q=q_0$; *5*- Tu_∞ =4.86%, $q=q_0/2$; *6* – экспериментальные данные [3]

Расчетные значения St(Re_{ξ0}) и i_w (Re_{ξ0}) получены для условий слабо нагретой стенки q_w =const для параметров Tu_∞= 2-9% и $\varepsilon'_{∞}$ =0.184×10⁻². Переменность St(Re_{ξ0})

вдоль поверхности при $q_w = q_0$ определяется изменением температурного фактора i_w даже для $u_e = u_{e0} =$ const. Анализ расчетных зависимостей St на (рис. 2, δ) дает представление о влиянии интенсивности Tu_{∞} и заданной величины q_0 на положение перехода.

При наличии гармонических колебаний скорости набегающего потока во времени уровень интенсивности турбулентности в нем оказывает доминирующее влияние на развитие теплового перехода в нестационарным пограничном слое. Для умеренных значений амплитуды A_0 и частоты f колебаний в условиях высокой интенсивности турбулентности зависимости St(τ , Re_{$\xi 0$}) и температурного фактора $i_w(\tau, \text{Re}_{\xi 0})$ (рис.3), соответствующие в начальный момент времени стационарным экспериментальным параметрам потока, быстро перестраиваются во всех областях течения, сохраняя при этом гармонический характер изменения по τ .

Рис. 3. Распределения St(τ , Re_{ξ_0}) (*a*) и $i_w(\tau)(\delta)$ (Re_{ξ_0}=const) для Tu_{∞}=4.86 %, $A_0 = 0.147$

В начальном сечении при $\tau=0$ расчетное распределение St(0, Re_{$\xi 0$}) от Re_{$\xi 0$} на рис. 3, а для Tu_{∞}=4.86% соответствует экспериментальным данным из [3] и эмпирическому турбулентному соотношению при нулевом градиенте давления. С ростом τ это начальное распределение видоизменяется. В каждом сечении Re_{$\xi 0$}=const кривые St(τ , Re_{$\xi 0$}) близки к гармоническим распределениям со сдвигом фазы относительно внешней скорости. При этом увеличение амплитуды A_0 внешней скорости от 0.10 до 0.147 приводит к росту амплитуды колебаний St(τ), наиболее заметное в конце области торможения потока.

Температурный фактор увеличивается вниз по потоку за исключением небольшой области перехода, где его изменения по продольной координате немонотонны, как и в области интенсивного торможения потока, в конце которой его значения падают. При ламинарном режиме степень роста температурного фактора превышает ее величину в развитом турбулентном течении (фиг.3, δ).

ЗАКЛЮЧЕНИЕ

В области, близкой к отрыву, динамика изменений профилей скорости и кинетической энергии турбулентности соответствуют закономерностям установленным в экспериментах. В условиях высокого уровня турбулентности в области торможения потока расчетные величины коэффициента трения уменьшаются с тем же темпом, что и в экспериментах.

Анализ совместного влияния параметров гармонических колебаний во времени скорости внешнего невязкого потока и турбулентности набегающего потока на развитие нестационарных характеристики течения и теплопереноса в пограничных слоях показал определяющую роль уровня интенсивности турбулентности

набегающего потока на интегральные характеристики. Увеличение амплитуды колебаний внешней скорости привел к количественному росту амплитуд колебаний всех расчетных интегральных характеристик.

Исследование выполнено при поддержке грантов НШ-397.2008.1 и РФФИ N 09-08-00307-а.

Литература

1. Алексин В.А. Моделирование влияния параметров турбулентности набегающего потока на пограничный слой криволинейного профиля// Изв. РАН. МЖГ. 1998. N 5. C. 79-89.

2. Transition Modelling for Turbomachinery II: An Updated Summ. of ERCOFTAC Trans. SIG Progr. 2nd WORKSHOP/ Ed. A.M. Savill. Cambridge: Univ. Press, 1994. 226 p.

3. Epik E.Ya. Heat transfer effects in transitions// Proc. on Turbulent Heat Transfer, Engineering Foundation Conf.. N. Y.: San Diego California. 1996. P. 1-47.

4. Алексин В.А. Моделирование влияния параметров турбулентности набегающего потока на теплообмен нестационарного пограничного слоя// Изв. РАН. МЖГ. 2003. N 2. C. 82-96.

5. Алексин В.А. Моделирование влияния параметров потока с высокой интенсивностью турбулентности на нестационарные пограничные слои с продольными градиентами давления// Изв. РАН. МЖГ. 2008. N 2. C. 122-136.

6. Chien K.-Y. Predictions of channel and boundary-layer flows with a low-Reynoldsnumber turbulence model// AIAA Journal. 1982. V.20. N 1. P.33-38.

7. Abu-Ghannam B.J., Shaw R. Natural transition of boundary layers- the effect of turbulence, pressure gradient, and flow history// J. Mech. Eng. Sci. 1980.V.22. N 5. P. 213-228.

8. Samuel A.E., Joubert P.N. A boundary layer developing in increasingly adverse pressure gradient// J. Fluid Mech. 1974. Vol. 66. Pt 3. P. 481-505.

9. Computation of turbulent boundary layer – 1968// Proc. AFOSR-IFR-Stanford Conference. Ed. Coles D.E., Hirst E.A. Vol. 2, Stanford Univ., 1969. 519 p.