Н.М. ФИАЛКО, В.Г. ПРОКОПОВ, Р.А. НАВРОДСКАЯ,

Ю.В. ШЕРЕНКОВСКИЙ, Н.О. МЕРАНОВА, Н.В. ГНЕДОЙ

ВТОРИЧНЫЕ ЭНЕРГОРЕСУРСЫ В ЭНЕРГЕТИЧЕСКОМ ХОЗЯЙСТВЕ УКРАИНЫ

Институт технической теплофизики НАН Украины, Киев, Украина, ул. Желябова, 2a nmfialko@ukr.net

Резюме

Ключевой проблемой мировой энергетики в настоящее время и на ближайшую перспективу является проблема энергосбережения. В этом отношении в комплексе всевозможных энергосберегающих мероприятий важное место занимает использование вторичных энергоресурсов (ВЭР). В настоящей работе рассматриваются особенности структуры и объемы выхода ВЭР по видам энергии в энергетическом хозяйстве Украины. Анализируется динамика изменения объемов выхода ВЭР за период с 2000 до 2010 гг. в контексте развития экономики страны. Приводятся данные об уровнях использования различных типов вторичных энергоресурсов, а именно, горючих, тепловых и ВЭР избыточного давления. Рассматриваются особенности использования ВЭР в различных отраслях промышленности, для разных типов утилизационного оборудования и пр.

Особое внимание уделяется прогнозированию объемов выхода и уровней использования ВЭР в Украине на период до 2020 г. Предлагаемый прогноз базируется на учете тенденций развития внешнеторговой политики Украины, связанной в большой мере с реализацией значительных объемов экспорта ряда сырьевых и энергоемких видов продукции.

Рассматриваются разработки Института технической теплофизики НАН Украины, посвященные созданию высокоэффективных технологий использования различных видов ВЭР и соответствующего оборудования для их утилизации.

Введение

В настоящее время энергосбережение является, как известно, основным направлением развития мировой энергетики. При этом энергосбережение классифицируется как новый источник энергии, источник более дешевый, чем многие другие традиционные и нетрадиционные источники энергии. В системе всевозможных технических энергосберегающих мероприятий в тепло- и энерготехнологиях выделяются три основные направления: утилизационные мероприятия, энергетическая модернизация и интенсивное энергосбережение.

При внедрении утилизационных мероприятий речь идет об использовании «энергетических отходов» - так называемых вторичных энергетических ресурсов (ВЭР), при энергетической модернизации – о снижении количества этих отходов без изменения

принципиальных основ технологий и техники. В случае интенсивного энергосбережения предполагается проведение мероприятий, реализующих предельно высокий энергосберегающий эффект. Последнее, как правило, достигается на базе изменения принципиальных основ технологий.

Первые две группы мероприятий относятся к традиционным энергосберегающим мероприятиям, третья группа – к мероприятиям глубокого научного, технологического и технического прогресса.

В Украине на ближайшую перспективу актуальными являются первые две группы мероприятий и, прежде всего, утилизационные мероприятия, то есть использование ВЭР. Последнее обусловлено, главным образом, тем, что утилизационные мероприятия относятся к сравнительно малозатратным и быстроокупаемым способам повышения эффективности использования первичных энергетических ресурсов. Например, себестоимость и капитальные затраты на производство тепловой энергии из тепловых отходов (из тепловых вторичных энергоресурсов) оказывается, как правило, в 3-4 раза меньше, чем на ТЭЦ либо в котельной.

Актуальность широкого внедрения в Украине различных утилизационных мероприятий обусловлена также тем, что это позволяет существенно уменьшить вредное влияние технологических объектов и объектов энергетики на окружающую среду.

Применение утилизационных мероприятий в целом призвано способствовать улучшению показателей энергоэффективности на всех уровнях производства и соответственно существенно влиять на снижение уровней энергопотребления в стране. По данным Международного энергетического Агентства [1] энергоемкость ВВП Украины в 2009 г. составила 0,40 т н.э./\$, что примерно в три раза выше соответствующего показателя для таких промышленно развитых стран, как Япония и ФРГ (0,14 т н.э./\$).

Ввиду изложеного изучение состояния и перспектив использования вторичных энергетических ресурсов, является одним из важных направлений анализа возможных объемов экономии топлива и энергии в стране.

В настоящей работе рассматриваются следующие вопросы, касающиеся использования ВЭР в Украине:

- особенности структуры и объемы выхода ВЭР по видам энергии в энергетическом хозяйстве Украины;
 - состояние и перспективы использования ВЭР в Украине;
- разработки Института технической теплофизики НАН Украины, посвященные использованию ВЭР.

Объемы выхода вторичных энергетических ресурсов

Вторичные энергетические ресурсы определяются как энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся в технологических агрегатах (установках), который не используется в самом агрегате, но может быть частично, или полностью использован для энергоснабжения других потребителей [2]. Термин «энергетический потенциал» здесь следует понимать в широком смысле, он означает наличие определенного запаса энергии — химически связанного тепла, физического тепла, потенциальной энергии избыточного давления и напора, кинетической энергии и др.

Рассмотрим структуру ВЭР в топливно-энергетическом комплексе Украины и данные об их выходе. В табл. 1 – 3 приведены материалы статистической отчетности по выходу и использованию горючих и тепловых вторичных энергоресурсов (ГВЭР и ТВЭР).

Таблица 1. Выход горючих ВЭР, фактическое производство высокопотенциальных тепловых ВЭР и уровень их использования в Украине за период 2000 – 2010 гг. по данным статистической отчетности [3].

Годы	Выход вторичных	Уровень	Фактическое годовое	Уровень
	горючих	использования,	производство вторичных	использова
	энергоресурсов, тыс.	%	тепловых энергоресурсов,	ния, %
	т у. т.		тыс. Гкал	
2000	7156,5	92,3	10073,0	93,8
2001	6872,3	92,6	11222,3	95,0
2002	10037,3	91,0	12010,6	95,0
2003	11044,8	89,5	13273,5	93,8
2004	11963,1	88,7	13223,1	93,3
2005	11119,2	87,3	13429,0	92,4
2006	11622,1	88,8	13512,9	95,9
2007	12460,6	88,3	14425,2	97,1
2008	11024,2	87,7	12634,9	94,5
2009	9317,3	86,5	8897,5	94,0
2010	10072,9	86,9	11088,3	94,9

Таблица 2. Выход и уровень использования различных видов горючих ВЭР [4, 5].

Виды горючих	200	05 г.	2010 г.			
вторичных	Годовой выход,	Уровень	Годовой выход,	Уровень		
энергоресурсов	тыс. т у.т.	использования,	тыс. т у.т.	использования,		
		%		%		
Доменный газ	7133,14	93,1	6252,87	93,3		
Конвертерный газ	554,25	4,1	359,28	2,2		
Ферросплавный газ	336,21	29,0	336,46	30,1		
Черная щелочь	11,30	100,0	-	-		
Отходы	13,90	43,6	32,35	27,1		
лесозаготовки						
Отходы деревообработки	52,76	96,2	107,79	97,5		
Другие виды	3017,40	95,1	2983,99	90,2		
Итого	11119,23	87,3	10072,87	86,9		

Общий годовой выход ВЭР в Украине в 2010 г. оценивается величиной 26,18 млн. т у.т. При этом в суммарном выходе ВЭР горючие ВЭР составляют 10,073 млн. т у.т. (38,5 %), тепловые ВЭР – 15,187 млн. т у.т. (58,0 %) и ВЭР избыточного давления – примерно 0,92 млн. т у.т. (3,5 %).

Что касается горючих ВЭР, то в их выходе основную долю дает черная металлургия (прежде всего доменный, конвертерный и ферросплавный газы). При этом выход доменного газа является превалирующим и в 2010 г. достигает 62% от выхода всех горючих ВЭР. Доля же конвертерного и ферросплавного газов составляет соответственно 3,6 и 3,3 % (см. табл. 2).

Динамика изменения объемов выхода горючих ВЭР за период с 2000 до 2010гг. коррелируется определенным образом с состоянием экономики страны. Так, с 2000 по 2007 гг. в целом имела место тенденция к росту объемов выхода горючих ВЭР. По состоянию на 2000 г. выход горючих ВЭР составил 7156,5 тыс. т у.т., а в 2007 г. – 12460,6 тыс. т у.т. То есть объемы выхода горючих ВЭР увеличились за этот период в 1,74 раза. В 2008 и 2009 гг. в связи с мировым экономическим кризисом, охватившим Украину, наблюдалось падение объемов выхода горючих ВЭР до уровня 11024,2 и 9317,3 тыс. т у.т. Однако, уже в 2010 г. наметилась

Таблица 3. Выход, фактическое производство и уровень использования высокопотенциальных тепловых ВЭР по типам утилизационных установок [4,5]

Тип утилиза-	2005 г.					2010 г.					
ционных	Годовой	Фактичес-	Фактичес-	Уровень	Уровень	Годовой	Фактичес-	Фактичес-	Уровень	Уровень	
установок	выход,	кое	кое	использова-	использова-	выход,	кое произ-	кое	использова-	использова-	
	тыс. Гкал	производс-	использова	ния от	то кин	тыс. Гкал	водство,	исполь-	ния от фак-	то кин	
		тво, тыс.	ние, тыс.	фактическо-	годового		тыс. Гкал	зование,	тического	годового	
		Гкал	Гкал	го произ- водства, %	выхода, %			тыс. Гкал	производства, %	выхода, %	
Энерготехноло											
гические	885,5	573,8	562,6	98,0	63,5	465,0	280,4	280,4	100,0	60,3	
установки											
Котлы- утилизаторы	11826,7	8269,6	8131,3	98,3	68,8	9549,2	6917,1	6678,2	96,5	69,9	
Котлы сухого	0242	775.2	775.2	100.0	02.0	11565	1004.1	1004.1	100.0	06.0	
тушения кокса	934,3	775,3	775,3	100,0	83,0	1156,5	1004,1	1004,1	100,0	86,8	
Котлы											
охлаждения	1034,8	977,1	741,2	75,9	71,6	928,5	861,9	861,9	100,0	92,8	
конвертерного	1031,0	7//,1	711,2	75,7	71,0	720,5	001,5	001,5	100,0	72,0	
газа											
Системы	2501.1	2505.1	10656		7 0.4	01.40.0	1.601.5	1267.2	0.1.0	<i>-</i> 2. -	
испарительно-	2791,1	2597,1	1965,6	75,7	70,4	2143,3	1681,7	1365,2	81,2	63,7	
го охлаждения											
Контактные	124.0	102.2	05.1	02.1	76.1	05.0	5.4.1	20.0	72.0	41.6	
теплообменни-	124,9	103,3	95,1	92,1	76,1	95,9	54,1	39,9	73,9	41,6	
КИ											
Другие установки	154,0	132,8	132,8	100,0	86,2	324,3	289,0	288,7	99,9	89,0	
Всего	17753,9	13429,0	12403,9	92,4	69,9	14662,7	11088,3	10518,4	94,9	71,7	

тенденция к росту этих объемов и выход горючих ВЭР повысился по сравнению с 2009 г. на 8% (см. табл.1).

Относительно тепловых ВЭР, то согласно оценкам их основную часть составляют низкопотенциальные тепловые ВЭР, температура которых ниже 200°С. В период с 2005 по 2010 гг. доля низкопотенциальных тепловых ВЭР составляла 85-86% от общего объема выхода ТВЭР, что отвечает примерно половине выхода всех видов ВЭР.

Что касается высокопотенциальных тепловых ВЭР, то к числу отраслей промышленности с их высоким выходом относятся химическая и нефтехимическая промышленности, а также черная металлургия. Существенно меньшие объемы выхода тепловых ВЭР имеют место в топливной, нефтеперерабатывающей промышленности и т.д. Так например, по состоянию на 2007 г. [6] выход высокопотенциальных тепловых ВЭР составил на предприятиях химической и нефтехимической промышленности — 8247,09 тыс. Гкал, черной металлургии - 7593,75 тыс. Гкал, топливной промышленности, включая коксохимические заводы, — 2641,96 тыс. Гкал, нефтеперерабатывающей промышленности — 1163,84 тыс. Гкал.

Данные об объемах выхода высокопотенциальных тепловых ВЭР на 2005 и 2010 гг. по типам соответствующих утилизационных установок представлены в табл. 3. Как видно, по состоянию на 2010 г. наибольший выход тепловых ВЭР отвечает котлам - утилизаторам – 9549,2 тыс. Гкал (65,1 % от общего выхода высокопотенциальных ТВЭР). Для систем испарительного охлаждения данный выход составляет 2143,3 тыс. Гкал (14,6 %). Значительно меньшие объемы выхода высокопотенциальных ТВЭР соответствуют котлам сухого тушения кокса – 1156,5 тыс. Гкал (7,9 %), котлам охлаждения конвертерного газа – 928,5 тыс. Гкал (6,3%), энерготехнологическим установкам - 465,0 тыс. Гкал (3,2 %) и пр.

Динамика фактического производства высокопотенциальных тепловых ВЭР с 2000 по 2010 гг. весьма сходна с характером изменения объемов выхода горючих ВЭР (см. табл. 1). В период с 2000 по 2007 гг. производство ТВЭР выросло в 1,43 раза. Последовавшее за этим в 2008 и 2009 гг. падение объемов фактического производства тепловых ВЭР сменилась в 2010 г. его заметным ростом (на 24 %).

Что касается ВЭР избыточного давления, то к ним, как известно, относится в первую очередь энергия избыточного давления природного газа, которая теряется при его дросселировании в газораспределительной системе и энергия избыточного давления доменного газа (при давлении, превышающем атмосферное более, чем на 0,09 МПа). Теоретические ресурсы потенциальной энергии избыточного давления природного газа составляют примерно 5,021 млн. МВт-час или 0,77 млн. т у. т., а энергии избыточного давления доменного газа – 995тыс. МВт-час или 0,15 млн. т у.т.

Особенности использования вторичных энергетических ресурсов в Украине

Степень использования горючих ВЭР в Украине весьма высока. Согласно данным государственной статистической отчетности уровень использования ГВЭР в 2010 г. составил 86,9%. Примерно такой же уровень использования горючих ВЭР имеет место и в черной металлургии. При этом степень использования составляет для доменного газа – 93,3 %, для ферросплавного – 30,1 %, для конвертерного – 2,2%. Дальнейшее повышение степени использования ГВЭР в черной металлургии связано, прежде всего, с разработкой и внедрением установок для очистки газов ферросплавных печей и разработки систем очистки и улавливания конвертерного газа.

Обращает на себя внимание также тот факт, что за период с 2000 по 2010 гг. уровень использования ГВЭР несколько снизился. Так, если в 2000 г. этот уровень составлял 92,3 %, то в 2010 г. – лишь 86,9%.

Степень использования тепловых ВЭР в Украине существенно ниже, чем горючих. Так, по данным отечественной статистики в 2010 г. степень использования ТВЭР, температура которых превышает 200 °C, составила 71,7 %. Хотя ряд авторов приводят оценки с существенно более низкими значениями, находящимися в пределах 40 - 50 % (см., например, [6]). Последнее обусловлено тем, что государственная статистическая отчетность фактически включает данные о выходе и использовании высокопотенциальных ТВЭР только для технологических агрегатов, оснащенных утилизационными установками. Что же касается низкопотенциальных ТВЭР, то информация об объемах их выхода и утилизации в статистической отчетности практически отсутствует.

Для различных отраслей промышленности объемы производства тепловой энергии от утилизации высокопотенциальных ТВЭР оказываются весьма разными. По состоянию на 2007г. эти объемы составляли: для предприятий черной металлургии - 5876,16 тыс. Гкал, химической и нефтехимической промышленности – 5803,73 тыс. Гкал, топливной промышленности, включая коксохимические заводы, - 1984,74 тыс. Гкал, нефтеперерабатывающей промышленности – 884,45 тыс. Гкал и т.д. Для указанных отраслей сравнительно высокими оказываются и уровни фактического использования ТВЭР по отношению к их выходу (соответственно 77,4 %, 70,4 %, 75,1 % и 76,0 % [6]).

Что касается уровня использования высокопотенциальных ТВЭР по отношению к их выходу для различных типов утилизационных установок, то он является весьма высоким для котлов охлаждения конвертерного газа (92,8 %) и котлов сухого тушения кокса (86,8 %). Заметно более низкий уровень использования имеет место для котлов-утилизаторов (69,9 %), систем испарительного охлаждения (63,7 %), энерготехнологических установок (60,3 %) и пр. (см. табл. 3).

Утилизации низкопотенциальных ТВЭР до недавнего времени не уделялось должного внимания, поскольку считалось, что это экономически неэффективно. Трудности, возникающие при утилизации данного вида ТВЭР, связаны с их большим разнообразием по температуре, режиму выдачи, физико-химическим свойствам их носителя и т.д. К факторам, определяющим относительно невысокую степень использования низкопотенциальных ТВЭР, относятся также следующие:

- отсутствие на целом ряде объектов утилизационного оборудования, несмотря на наличие его освоенных аналогов;
- техническое несовершенство уже установленного утилизационного оборудования, его физическое старение и низкий уровень обслуживания;
- практическая невозможность установки утилизационного оборудования ввиду отсутствия потребителей теплоты рядом с источником образования ВЭР, необходимых площадей для установки утилизационного оборудования и пр.;
 - несоответствие режимов образования и потребления ТВЭР;

- отсутствие оптимальных схем использования ВЭР в рамках единой энерготехнологической системы предприятий или промышленных узлов;
- недостаточность разработок специализированного утилизационного оборудования для ситуаций, осложненных запыленностью, агрессивностью отходящих газов и пр.

Вторичные энергоресурсы избыточного давления используются в Украине весьма ограниченно. Так, в газотранспортной системе они практически не утилизируются. Что же касается потенциальной энергии доменного газа в металлургической промышленности, то перспективы ее использования связаны, как известно, с внедрением газовых утилизационных бескомпрессорных турбин.

Прогнозирование выхода и использования вторичных энергетических ресурсов

Прогнозирование объемов выхода и использования ВЭР осуществлялось путем рассмотрения комплекса исходных технических, технологических и энергетических факторов с целью оценки величин соответствующих параметров и интервалов их изменения в прогнозном периоде. При этом в процессе прогнозирования анализировался большой объем неопределенной информации, что обусловило необходимость использования методов теории вероятности, экспертных оценок, имитационного моделирования и др. Важным практическим инструментом для рассматриваемых прогнозов служила также имеющаяся отчетная статистика.

Полученные результаты прогнозных оценок показали увеличение объемов выхода и использования ВЭР для одних производств и их снижение для других. В предлагаемом прогнозе учитывались такие факторы снижения выхода ВЭР, как применение технологий глубокой переработки нефти, вывод из эксплуатации мартеновских технологий производства стали и пр. К факторам увеличения объемов выхода и использования ВЭР были отнесены следующие: внедрение установок очистки газов ферросплавных печей; использование систем утилизации теплоты конвертерного газа, металлургических шлаков и остывающего металла; увеличение числа котлов-утилизаторов за печами цветной металлургии; внедрение крупных утилизационных установок в прокатном производстве; запрет экспорта сырьевой древесины и существенное увеличение доли конечной продукции в деревообработке и пр. Согласно

выполненным оценкам существенное влияние на увеличение степени использования низкопотенциального тепла окажет рост масштабов применения тепловых насосов.

Одним из определяющих аспектов в оценке перспектив выхода и использования ВЭР является, как известно, прогноз структурных изменений в экономике страны. В этом плане ситуация в Украине в последний период существенно изменилась. Если ранее во всех прогнозах развития экономики Украины отмечалась важность структурных сдвигов в направлении снижения удельного веса энергоемких, материало- и ресурсоемких производств, то в настоящее время декларируется внешнеторговая политика, которая основывается на реализации больших объемов экспорта ряда сырьевых и энергоемких видов продукции таких отраслей, как металлургия, химия, нефтехимия и др.

В связи с большой неопределенностью исходной информации для нахождения объемов выхода и использования горючих и тепловых ВЭР были сгенерированы три варианта прогноза (оптимистический, пессимистический и средний). В табл. 4 и 5 приведены показатели среднего варианта прогноза на 2015 и 2020 гг.

Таблица 4. Прогноз объемов выхода и уровня использования различных видов горючих ВЭР (средний вариант)

Виды горючих	201:	5 г.	2020 г.			
вторичных	Годовой выход,	Уровень	Годовой выход,	Уровень		
энергоресурсов	тыс. т у.т.	использования,	использования, тыс. т у.т.			
		%		%		
Доменный газ	7980,0	95,0	8910,0	96,0		
Конвертерный газ	600,0	25,0	720,0	55,0		
Ферросплавный газ	395,0	48,5	420,0	65,0		
Отходы лесозаготовки	45,0	50,0	45,0	50,0		
Отходы деревообработки	150,0	98,0	180,0	99,0		
Другие виды	3610,0	96,5	4100,0	97,0		
Итого	12780,0	90,5	14375,0	93,2		

Таблица 5. Прогноз объемов выхода, производства и использования высокопотенциальных тепловых ВЭР Украины по типам утилизационных установок (средний вариант)

	2015 г.					2020 г.				
	Годовой	Фактичес	Фактичес-	Уровень	Уровень	Годовой	Фактичес-	Фактичес	Уровень	Уровень
Тип	выход,	кое	кое испо-	использова-	исполь-	выход,	кое	кое	использова-	использо-
утилизационных	тыс.	производ	льзование	то кин	зования	тыс.	производ-	использо	то кин	вания от
установок	Гкал	ство, тыс.	тепловых	фактическо-	от годо-	Гкал	ство, тыс.	вание,	фактическо-	годового
		Гкал	ВЭР, тыс.	го производ-	вого		Гкал	тыс. Гкал	го призво-	выхода, %
			Гкал	ства, %	выхода, %				дства, %	
Энерготехнологические установки	900	580	580	100,0	64,4	925	600	600	100,0	64,9
Котлы-	12000	8400	8290	98,7	69,1	13865	9700	9595	98,9	69,2
утилизаторы										
Котлы сухого	1290	1070	1070	100,0	82,9	1325	1100	1100	100,0	83,0
тушения кокса										
Котлы охлаждения	1100	1000	1000	100,0	90,9	1130	1050	1050	100,0	92,9
конвертерного										
газа										
Системы	2600	2280	1850	81,1	71,1	2780	2450	2000	81,6	76,6
испарительного										
охлаждения										
Контактные теплообменники	100	70	60	85,7	60,0	120	100	92	92,0	78,0
Другие установки	320	290	289	99,7	90,3	550	500	500	100,0	90,9
Всего	18310	13690	13139	95,9	71,8	20695	15500	14937	96,4	72,2

Согласно полученным данным прогнозные показатели объемов выхода горючих ВЭР в 2015 и 2020 гг. возрастут относительно 2010 г. соответственно на 27% и 43%. При этом заметно увеличатся и уровни использования данного вида ВЭР – от 86,9% в 2010 г. до 90,5% в 2015 г. и до 93,2% в 2020 г. (см. табл. 4).

Темпы роста объемов выхода горючих ВЭР в черной металлургии будут несколько выше общих показателей. А именно, здесь объемы выхода горючих ВЭР увеличатся в 2015 и 2020 гг. по сравнению с 2010 г. соответственно на 29% и 45%. При этом предполагается опережающий рост объемов выхода конвертерного газа - на 67 % и 100%.

Что касается прогнозных показателей объемов выхода высокопотенциальных тепловых ВЭР, то темпы их роста являются несколько более низкими, чем горючих ВЭР. Так, согласно оценкам данные объемы увеличатся в 2015 и 2020 гг. соответственно на 25% и 41% по сравнению с 2010 г. Прогнозируется, что объемы выхода высокопотенциальных тепловых ВЭР, утилизируемых в энерготехнологических установках, будут изменяться более существенно, чем общие показатели, и возрастут к 2015 г. в 1,93 раза, а к 2020 г. – примерно в 2 раза. Несколько превысит общие прогнозные показатели выход тепловых ВЭР, используемых в котлах - утилизаторах. Здесь этот выход увеличится по отношению к 2010 г. на 45%.

Разработки Института технической теплофизики НАН Украины

В течение многих лет в Институте технической теплофизики НАН Украины проводятся систематические исследования, касающиеся использования различных видов ВЭР. При этом работы выполняются в соответствии с классической схемой, начиная с целенаправленных научных исследований и заканчивая созданием и внедрением высокоэффективных технологий использования ВЭР и соответствующего оборудования.

Основные направления работ института по использованию ВЭР связаны с утилизацией горючих и тепловых ВЭР.

Что касается горючих ВЭР, то здесь речь идет о разработке научных основ эффективных технологий сжигания древесной массы, первичных и вторичных отходов сельского хозяйства, твердых бытовых отходов и создания соответствующего оборудования. Кроме того в институте ведутся работы, связанные с получением биогаза из отходов

животноводства, с полигонов твердых бытовых отходов и осадков станций аерации. Рассматриваются также возможности производства жидкого топлива из биомассы путем пиролиза и пр. (см. например [7-9]).

Проводимые в институте работы по использованию тепловых ВЭР касаются как высокопотенциальных, так и низкопотенциальных ТВЭР. При этом в части высокопотенциальных ТВЭР исследования связаны, прежде всего, с утилизацией тепловых отходов промышленных печей различного назначения, а также газотурбинных и газопоршневых двигателей [10, 11].

Что касается низкопотенциальных ТВЭР, то здесь исследования проводятся в направлении использования тепловых выбросов котельных агрегатов, промышленных печей, а также теплоты различных вентиляционных выбросов, бытовых и промышленных стоков, шахтных вод и пр. [12-15].

Создаваемые в институте технологии использования ТВЭР базируются на комплексных теоретических и экспериментальных исследованиях, включающих, в частности:

- изучение закономерностей процессов переноса применительно к конкретным технологиям утилизации ТВЭР;
- термодинамический анализ эффективности различных систем утилизации на основе применения современных подходов;
- оптимизацию тепловых схем утилизирующих систем, конструктивных и режимных параметров соответствующего оборудования на основе учета разнообразия источников ТВЭР и потребителей энергии.

Выводы

В заключение отметим следующее.

1. В настоящее время использование вторичных энергоресурсов является важным фактором энергосбережения в Украине. Объемы общего годового выхода ВЭР в стране оцениваются по состоянию на 2010 г. величиной равной 26,18 млн. т у.т.

- 2. Потенциал ВЭР в целом используется недостаточно. При этом особого внимания требует утилизация низкопотенциальных тепловых ВЭР, объем выхода которых достигает половины общего выхода всех ВЭР.
- 3. Широкое использование ВЭР сдерживается целым рядом факторов научнотехнического характера. Кроме того решение данной проблемы осложняется отсутствием достаточно разработанной законодательной базы, соответствующей системы материального и финансового обеспечения и пр.

Литература

- Key World Energy Statistics. The International Energy Agency. Energy Indicators. 2011. –
 P.57.
- 2. Сушон С.П., Завалко А.Г., Минц М.И. Вторичные энергетические ресурсы промышленности СССР. М.: Энергия, 1978. 320 с.
- 3. Статистичний щорічник України за 2010 рік. К.: Видавництво Консультант, 2011. 551 с.
- 4. Статистична річна форма 11МПТ «Звіт про результати використання палива, теплоенергії, електроенергії. Додаток 2.– 2005.
- 5. Статистична річна форма 11МПТ «Звіт про результати використання палива, теплоенергії, електроенергії. Додаток 2.— 2010.
- Куц Г.О. Використання теплових вторинних енергоресурсів у системах теплопостачання міст // Проблеми загальної енергетики. − 2010. − вип.1. − С.47-51.
- Гелетуха Г.Г., Жовмір М.М., Олійник Є.М., Радченко С.В. Біомаса як паливна сировина // Промышленная теплотехника. - 2011, №5. – С. 79-87.
- Гелетуха Г.Г., Железна Т.А., Жовмір М.М., Матвєєв Ю.Б., Дроздова О.І. Оцінка енергетичного потенціалу біомаси в Україні. Частина 2. Енергетичні культури, рідкі біопалива, біогаз // Промышленная теплотехника. 2011, №1. С. 57 64.
- 9. Железна Т.А., Гелетуха Г.Г., Дроздова О.І. Дослідження технології абляційного піролізу біомаси // Промышленная теплотехника. 2011, №3. С. 53 60.

- 10. Фиалко Н.М., Навродская Р.А., Сариогло А.Г., Слюсар М.А. Эффективные теплоутилизационные технологии для стекловаренных печей // Промышленная теплотехника. -2010. Т. 32, № 6. С. 84–90.
- Билека Б.Д., Радченко Н.И., Сирота А.А. Особенности проектирования теплообменников на НРТ для теплоутилизирующих контуров ГТУ // Промышленная теплотехника. 2004.
 Т. 26, № 5. С. 27–31.
- Фіалко Н.М., Пресіч Г.О., Навродська Р.О., Гнедаш Г.О. Удосконалення комплексної системи утилізації теплоти відхідних газів котлоагрегетів для підігрівання і зволоження дуттьового повітря // Промышленная теплотехника. 2011. Т. 33, № 5. С. 88–95.
- Фиалко Н.М., Зимин Л.Б. Анализ эффективности теплонасосных систем утилизации теплоты канализационных стоков для теплоснабжения социальных объектов // Промышленная теплотехника. 2008. Т. 30, № 1. С. 77–85.
- Клименко В.Н. Некоторые особенности применения паро-компрессионных тепловых насосов для утилизации сбросной теплоты отопительных котлов // Промышленная теплотехника. – 2011. – Т. 33, № 5. – С. 42–48.
- 15. Снежкин Ю.Ф., Шаврин В.С., Чалаев Д.М., Шапарь Р.А. Применение теплонасосных технологий в энергетике // Экотехнологии и ресурсосбережение. 2008, № 3. С. 11 15.