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Introduction  
Thermal convection in a horizontal fluid layer of binary mix heated from below originates in 
the case of normal Sore effect as a result of instability with respect to monotonous 
disturbances. The same instability situation is observed for cavities of different forms that 
have wide horizontal boundaries. In similar cavities heated from below there is 
thermodiffusive division of mix components along vertical axis. So there is the opinion that 
the oscillatory convection in binary mix near the boundary of stability exists for only 
anomalous thermal diffusion when there is the competition of thermal gravitational 
mechanism of convection excitation and thermal diffusive one. Our preliminary experimental 
and theoretical results show that the oscillatory convection in binary mix is possible to be 
observed near the boundary of stability for normal thermodiffusion in specific conditions. 
According to the basic assumption explaining experiments the complex oscillatory regimes in 
binary mixes for positive Sore coefficient are determined by thermodiffusive division of mix 
components in horizontal plane when the fluid moves predominantly along vertical heat-
conducting boundaries [1,2]. Long convective loop in vertical direction (connected channels) 
and Hele-Shaw cell are examples of the cavities in which the same flows could be observed.  
 
In practice it is often important to take into account the presence of oscillatory regimes in 
binary liquids near the threshold of convection excitation. Thus, the phenomenon of thermal 
diffusion is applied for industrial isotopes division in vertical fractionator. 
 
In this paper mechanisms of flow’s excitation and various overcritical regimes of thermal 
convection in connecting channels have been investigated theoretically and experimentally for 
binary mixes with well-known thermodiffusive properties. Also the influence of oscillatory 
regimes near the boundary of stability on dopant distribution has been studied. It is found for 
binary mixes with normal thermal diffusion that similarly to connecting channels specific 
oscillatory flows take place near the threshold of convection in Hele-Shaw cell.  
 
Experimental technique 
The experimental setup (Fig. 1a) consists of a rectangular metal bar 1 with massive 
isothermal heat exchangers 2 in which a liquid circulates in order to control temperature. 
Thus, uniform temperature distribution across the section and linear with respect to the bar 
length has been created. In the bar, there are two parallel longitudinal channels with a square 
section and thickness 2d = 3.2 mm, connected at the top and at the bottom by channels of the 
same cross section. The height of the vertical channels is equal to H = 50 mm. The channels 
are closed by a transparent plastic plate which made it possible to observe the flow. The 
mixtures of CCl4 in decane C11H22 and Na2SO4 in water have been used as working fluids. 
The coefficients of concentration density βc of these mixtures are high; therefore even small 
concentration gradients create fairly strong non-uniformities of density which cause the onset 
of convection. 
 



The mixtures were prepared in a glass flask and, before being poured into the channels, were 
thoroughly mixed for 10 – 15 min by intense shaking. In the experiments the flow rate was 
recorded by a differential thermocouple (Fig. 1a) with an electrode diameter of 0.1 mm 
installed at the center of the channels with respect to the channel height. Each junction of the 
thermocouple was 1.5 mm long and reached the channel center. Thus, the junction to some 
extent averaged the temperature across the channel. In comparing the theoretical results with 
the thermocouple measurements, an empirical averaging coefficient was used. The junctions 
of a second thermocouple, inserted into narrow drill holes in the heat exchangers, measured 
the vertical temperature difference ΔT. The readings of both thermocouples were determined 
by a V7-21 digital voltmeter and recorded on graph paper by a KSP-4 recorder. As a measure 
of the flow rate we used the non-dimensional parameter Θ = |ϑ|/ΔT, where ϑ is the 
thermocouple reading and ΔT is the vertical temperature difference between the heat 
exchangers.  

1

2

2
3

4

x

y

z

h
1 2

2d
2d

а б

1

2

2
3

4

x

y

z

h
1 2

2d
2d

а б  
Fig. 1. Experimental setup (a): copper bar (1), heat exchangers (2), channels (3), 

thermocouples (4); coordinate system (b). 
 

In pure fluids (water, decane and CCl4) heated from below, convection develops in 
accordance with the known theoretical and experimental results on the convective instability 
of one-component Newtonian fluids. For small vertical temperature differences, these fluids 
are in stable mechanical equilibrium. In this case the non-dimensional parameter Θ is equal to 
zero. When the critical temperature difference is attained, a monotonous convective 
circulation flow branches softly from the equilibrium, the fluid ascending in one channel and 
descending in the other. The flow rate increases with the growth of temperature gradient. The 
critical temperature difference, at which convective circulation of the decane begins, is ΔT0 = 
1.50 ± 0.05 K, which corresponds to the critical Rayleigh number Ratc ≈ 20. The thermal 
Rayleigh number has been determined in terms of the temperature gradient ΔT/H as follows: 

4

tRa td Tβ
νχ

= ∇
g  

where g is the gravity acceleration, βt, ν, χ are thermal-expansion coefficient, kinematic 
viscosity and thermal diffusivity. Sometimes, instead of the Rayleigh number it was more 
convenient to use the supercriticality parameter μt = Rat/Ratc. Within the limits of 
experimental error, the curve Θ = Θ(μt) was reproduced on both paths for increase and 
decrease of μt. In the experiments, two flow directions occurred with the same probability: 
one with positive and the other with negative Θ. Also the temperature deviation from a linear 
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distribution measured along the vertical on the channel axis. These measurements were 
performed using groups of thermocouples with the junctions located along the channel axes. 
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Fig. 2. Amplitude curves for binary-mixture flow in the connected channels: amplitudes of the 
harmonic and “flop-over” oscillations (4), (5); stationary-state regimes with and without account for 
thermodiffusion (1), (6) – ε > 0, (2) – limiting case ε = 0, (3) – ε < 0; experimental data (7–10). 

 
When the channels are occupied by a mixture of the working fluids, the results change 
qualitatively. The oscillatory growth of disturbances begins in the channels when the critical 
Rayleigh number is attained and, depending on the supercriticality and the initial conditions, 
ends in either a stationary circulation or in oscillating flow with alternation of the mixture 
circulation direction. Experimental points for mixtures with different concentrations and 
theoretical amplitude curves Θ = Θ(μt) of different stationary and oscillating regimes are 
presented in Fig. 2. Experimental points near the abscissa axis correspond to the values of the 
governing parameter μt at which, in different realizations, “hard” transition from mechanical 
equilibrium to intense convection occurred. For large values of the supercriticality (μt > 1.3), 
as a result of the transient process a stationary convective flow developed usually, whose 
intensity is shown in Fig. 2. The graph Θ = Θ(μt) has a characteristic maximum in experiment 
with Θmax ≈ 0.25 that confirmed by the theory. Curves 1 and 3 correspond to the calculations 
[3] for stationary convection in binary mixtures with positive and negative values of 
thermodiffusion coefficient. For small and moderate values μt the process of transition from 
equilibrium ended in oscillations which were accompanied by a periodic change in the 
direction of mixture flow in the channels. These oscillations with constant amplitude were 
realized in the right-hand neighborhood of the critical point Ratc within a very narrow region 
(μt ≈ 1 – 1.3). The oscillation period turned out to be very sensitive to small variations of the 
supercriticality. In narrow interval μt ≈ 1.1 – 1.3 the oscillation period increased from 3 min 
to 1 hour. The shape of the oscillations was transformed from near-sinusoidal (Fig. 4) to near-
rectangular (Fig. 5). Over non-linear oscillations with near-rectangular shape the system made 
regular transitions from the state with definite circulation direction to the state with the 
opposite one.  
 
Thus, in experiment convective instability of equilibrium in binary liquid mixtures is related 
with the oscillatory growth of the initial disturbances and is accompanied by hysteresis with 



respect to the Rayleigh number. It is necessary to use the theory of thermoconcentration 
convection to explain this effect. 
 
Equations system and non-dimensional parameters 
Connected channels have rigid, heat conducting boundaries, but in the course of following 
calculations we neglect the thermal interaction between the left and right channel. Coordinate 
system with the z-axis directed along the channel has been presented in Fig. 1b. In this 
coordinate system γ(0, 0, 1) is a unit vector directed vertically upward. Convective loop is 
heated from below so that, on the vertical channel boundaries, a linear temperature 
distribution is maintained. It will be shown below that, for this temperature distribution, the 
binary liquid can be in a state of mechanical equilibrium. 
 
For modeling the convective flows of a binary mixture, we will use the equations for an 
incompressible fluid obtained in [4] on the basis of the hydrodynamic equations in the 
Boussinesq approximation: 
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Here, v, T, p, C are the velocity, temperature, pressure, and heavy-admixture concentration 
fields and ρ is the mean density of the fluid. The coefficient βc describes the dependence of 
the density on the concentration 

,
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In the case considered, βc < 0 because CCl4 in decane and Na2SO4 in water are heavy 
admixtures. The effects associated with the presence of an admixture are also characterized by 
the diffusion D and thermodiffusion α coefficients. In the approximation (1) – (3), it is 
assumed that the diffusion and heat fluxes are related with the concentration and temperature 
gradients by the formulas: 

( )D C Tρ α= − ∇ + ∇J ,    Tκ= − ∇q  

where κ is the thermal conductivity.  
 
The scales used for non-dimensional variables in equations (1) – (3) are: the channel half-
width d for distance, d2/ν for time, θ for temperature, θβt/βc for concentration, and ρν2/d2 for 
pressure. In terms of new non-dimensional variables, system (1) – (3) takes the form: 

 ( ) ( )Ra
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Equations (4) – (6) contain four non-dimensional parameters, namely: 
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Three parameters are the Prandtl, Schmidt, and Rayleigh numbers. Additional non-
dimensional parameter in the problem ε characterizes the thermal diffusion in the mixture 
(α = kT/T, where kT is the thermodiffusion ratio). 
 
In the calculations, on the vertical channel boundaries we specified the no-slip condition v = 
0. The channel walls were assumed to be perfectly heat-conducting. Accordingly, on the 
vertical boundaries of the calculation domain the temperature disturbances were zero. 
Moreover, on the impermeable rigid walls the normal component of the diffusion flux density 
Jn vanishes. The boundary condition for non-dimensional diffusion flux density has the form: 

 0С Tε∂ ∂
+ =

∂ ∂n n
 (7) 

Also the condition of zero flux through the cross section of two channels has been imposed: 

( )(1) (2) 0z z
S
v v dxdy+ =∫∫ . 

Here, the superscript corresponds to the channel number (Fig. 1b). 
 
Mechanical equilibrium state 
At a certain value of the temperature gradient, mechanical equilibrium state exists that is 
characterized by the absence of fluid motion (zero velocity): 

0
t

∂
=

∂
,  ,  ,  ,  0=v 0p p= 0T T= 0C C= . 

Here T0, p0, and C0 are the equilibrium temperature, pressure, and admixture concentration. 
Applying the curl operator to equation (4), for a binary mixture in the state of mechanical 
equilibrium we obtain the system of equations 
 
 [ ] [ ]0 0 0T C∇ × − ∇ × =γ γ , (8) 

 ,    .  (9) 0 0TΔ = 0 0CΔ =

In what follows, the specific case has been analyzed: 
 



0
1T
H

∇ = − γ . 

 
This temperature gradient corresponds to the linear temperature distribution T0 = − z/H and 
heating from below. In this case, the Laplace equation for the temperature (9) is satisfied 
identically. The other equations of system (8) – (9) make it possible to find the equilibrium 
admixture distribution in the channels formed as a result of thermal diffusion. With account 
for boundary condition (7), on the upper and lower channel boundaries we obtain the linear 
vertical heavy-admixture concentration distribution C0 = εz/H. 
 
Method of solution 
In the experiments, the channel’s height was greater than the width one H >> d. This made it 
possible to use the straight-trajectory approximation v(0, 0, u(x, y, t)) in the calculations. 
Integrating equation (4) along the channels over a closed contour, we eliminate the pressure 
gradient. As a result, following equation takes place: 

 ( ) ( )(1) (2) (1) (2)
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2 2Pr
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where the superscripts correspond to the left and right channels, respectively. Thus, the 
straight-trajectory approximation results in the linearization of the Navier-Stokes equation. 
Then, the equations (5) and (6) are solved together with (10) using a combination of the 
Galerkin – Kantorovich procedure and finite-differences method. The experimental 
measurements show that the temperature has definite vertical distribution and Fourier analysis 
indicates that this distribution can be approximated by two trigonometric functions 
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It is convenient to introduce the new variable F = C + εT. Taking into account the structure of 
the equations, the field F(x, y, z, t) can be represented in the form of the expansion 
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Substituting the expansions of T and F in the original equations (5) – (6) and (10), after 
application of the Galerkin – Kantorovich procedure we obtain the amplitude equations for u, 
T1, T2, F1, F2, F3 which are solved numerically using a finite-difference method. The 
algorithm was designed in accordance with the explicit solution scheme. The time derivatives 
and the derivatives with respect to the spatial coordinates were approximated by one-sided 
and central differences. The working number of grid points per channel section was 33×33. 
The calculations were performed using the time-relaxation method. 
 
Discussion 
In accordance with the experiments, the calculations were performed for channels with non-
dimensional height H = 30.5. Taking into account the equal status of the channels, the results 
have been presented only for the left channel. In a homogeneous liquid, as the critical 
Rayleigh number is exceeded, convection takes place “softly”. Depending on the initial 
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disturbance shape, both upward and downward flow may develop in the channel. The 
situation changes radically if an admixture is present in the liquid. Since in the experiments 
the Schmidt number was much greater than the Prandtl number, in the calculations these 
parameters were taken equal to Pr = 7, Sc = 60. The thermodiffusion parameter ε = 0.1 
corresponds to normal thermal diffusion. It follows from Fig. 2 that, in the binary liquid, 
development of intensive convection is “hard”, with the threshold being determined by an 
increase in the oscillatory disturbances. For a small supercriticality, a disturbance introduced 
into the fluid grows rapidly and then an oscillation regime with a certain amplitude and 
frequency is established. In the calculations, a sinusoidal-oscillation regime is observed on the 
range Ra ≈ 28 – 32. The amplitude of temperature oscillations is shown in Fig. 4. The 
oscillation period in dependence on the supercriticality increases. With increase in Ra, the 
oscillations cease being sinusoidal threshold-wise, the system goes over to the “flop-over” 
oscillation regime observed on the range Ra ≈ 32 – 50, see Fig. 5. With increase in μt, the 
channel flow becomes more intensive. When the concentration effects cease to play the key 
role, for Ra > 50, as a result stationary flow begins to be established. Also the theory predicts 
origination of stationary flow for μt < 1 in the case of positive thermodiffusion coefficient. 
The graph with temperature amplitude “below threshold” in dependent on time is presented in 
Fig. 3. This stationary regime is not observed in experiment because of two reasons: first, the 
time of approach to it is too greater then the time of real experiment; second, the rate of this 
flow is negligibly small.  
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The calculations performed for positive and negative values of the coefficient ε satisfactorily 
describe the experimental results, which makes it possible to draw certain conclusions 
concerning the diffusion properties of the admixture. The mechanism responsible for the 
effects observed is mainly attributable to the thermodiffusion separation of the mixture which 
is due to the horizontal temperature gradients ∇xT, ∇yT ∼ Θ/d = 3 K/cm rather than to the 
weak vertical gradients ∇zT = ΔT/h ∼ 0.3 K/cm with a characteristic component separation 
time h2/D ∼ 103 hours. The horizontal gradients occur only in the circulating fluid. The 
separation time across the channel is d2/D ∼ 1 hour, which coincides in order of magnitude 
with the time of circulation of the fluid around the loop, i.e. a liquid particle is able to change 
its composition during the motion in each of the channels. For a fairly slow circulation, there 
is a feedback effect of the concentration non-uniformities generated by thermal diffusion on 
the convective flow.  
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