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 ABSTRACT: For experimental research of physical processes in liquids and gases can be used the method of laser 
refractography consisting in probe the medium of interest with structured laser radiation, record the radiation passing 
through the medium with a CCD camera, and process with the aid of a computer the refraction patterns captured with a 
view to finding out the properties of the medium. Refractograms are simulated by solving equations of geometric optics 
as applied to inhomogeneous mediums. However, presence a complex beam pattern in the medium, formation of 
caustics and need to consider the diffraction effects, geometrical optics approach is untenable and requires wave 
methods using. 

For this purpose the authors developed a method of calculating laser refractograms based on solving wave 
equation. Calculating refractograms in relation of geometrical optics and Fresnel diffraction have problems associated 
with the requirement of large computational resources because of rapidly oscillating function under the integral sign. 
This paper is devoted to the implementation of the algorithm in the programming environment Delphi, which reduces 
the calculation time. The typical laser refractograms are shown calculated for the plane and linearly-structured laser 
radiation propagated through cylindrical and planar inhomogeneous layers. 

The simulation results can be used in laser diagnostics of optically transparent inhomogeneous media. 
 

1 LASER REFRACTOGRAPHY TECHNIQUE 

The active application of laser techniques to the diagnostics of acoustic pressure, temperature, density, salinity, 
and current velocity fields in transparent media is due to their substantial advantages over other methods. First and 
foremost, optical measurements do not disturb the fields under study because the energy absorbed by the medium of 
interest is in most cases rather low, which allows diagnosing fast processes. An additional merit of laser techniques is 
the possibility they provide for taking remote measurements. Laser techniques make it possible to study refractive index 
fields that can then be converted into the desired fields of other physical quantities [1]. 

Laser refractography is a novel laser technique for diagnosing optically inhomogeneous media [2-4], based on 
the probing of the medium under study with a structured laser radiation, the digital recording of the refraction pattern 
(refractogram), and its computer processing with a view to recovering the properties of the medium. Regularly 
structured laser radiation is formed directly at the exit from the radiation source by means of special optical elements 
that allow the radiation to retain its high coherence and provide for low beam divergence. This makes it possible to 
describe structured laser radiation in terms of geometrical (ray) optics. Within the framework of ray optics, structured 
laser radiation can be represented by families of rays forming surfaces in the form of discrete sets of planes, nested 
cylinders, cones, etc. 

Structured laser radiation (SLR) is a spatially amplitude-modulated radiation obtained with the aid of the 
classical optical elements, diffraction optical elements, or structured screens. 
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The main types of structured laser radiation are presented in Fig. 1. They are classed by the shape of the spatial 
geometrical figures formed by the rays from the source as follows: line-structured, plane-structured, and cone-structured 
laser radiation. The two-dimensional figures presented in the table are cross-sections of the beams formed by the 
families of geometrical-optics rays from the source.   

 
Fig.1 Main types of structured laser radiation 

Obviously the initial beam structure described by a number of informative parameters changes upon the 
refraction of the beam in an optical inhomogeneity, which allows the inhomogeneity to be quantitatively diagnosed and 
visualized on the basis of the experimental refractograms. 

Fig. 2 presents a block diagram of a laser refractographic system.  
 

 
Fig. 2 Block diagram of a laser refractographic system: 1 – laser; 2 – optical SLR forming unit; 3 – SLR (laser plane); 4 – optical 

inhomogeneity under study; 5 – ground glass screen; 6 – digital video camera; 7 – personal computer 

 
 

 
Fig. 3 Typical of experimental refractograms: 1 – horizontal laser plane beneath the bottom of a parallelepiped; 2 – inclined laser 

plane near an edge of a parallelepiped; 3 – vertical laser plane next to a side face of a parallelepiped; 4 – horizontal laser plane 
beneath the bottom of a cylinder 

The mathematical modeling of the refraction patterns (refractograms) obtained by probing the medium under 
study with a structured laser radiation is fundamental to the quantitative diagnostics of the medium. 
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Geometrical-optics models of refractograms have been used to solve inverse problems on the recovery of the 
refractive index, temperature, and salinity of various media. However, where complex ray patterns are present or caustic 
surfaces are formed in the medium, or else where diffraction effects must be taken into consideration, the geometrical-
optics approach proves inconsistent, and so use should be made of wave methods. For this reason, we have developed a 
wave-equation-based refractogram processing algorithm. 
 

 
 2 WAVE METHODS IN LASER REFRACTOGRAPHY PROBLEMS 

2.1 

In accordance with Fig. 4, the propagation of a structured laser beam probing an inhomogeneity should be 
modeled in the following three sections: in the free region of length l0 from the radiation source to the inhomogeneity, 
within the inhomogeneity of length lI, and in the free region of length l from the inhomogeneity to the observation plane 
(the screen whereon the experimental refraction pattern is observed). In the staring formulation of the problem, we will 
assume that the optical field at the entry to the inhomogeneity is wholly determined by the known characteristics of the 
beam from the structured radiation source. Therefore, the problem is reduced to the consideration of the beam 
propagation straight in the inhomogeneous medium and in the region from the exit from the medium to the observation 
plane. 

 
 

Fig. 4 Propagation of a structured laser beam probing an inhomogeneity from the radiation source to the observation plane:  
1 – laser; 2 – optical SLR forming system; 3 – inhomogeneous medium; 4 – screen in the observation plane 

The propagation of a beam in an inhomogeneous medium is described by the Helmholtz equation  
 

.0),,(2  UzyxkU                                                                          (1) 

                  
The propagation of the structured beam in free space can be modeled on the basis of a spectral method or with 

the use of a Green formula. 
Consider the solution of equation (1) in the case of free space, i.e., at k(r) = k0 = 2π/λ. 
Let the wave front at the boundary z = 0 corresponding to the beam exit plane of the inhomogeneity be given by 

 
                                          ).,(),,( 00

yxUzyxU
z
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                                                      (2) 

 
Given boundary conditions (2), it is necessary to find U(x, y, z) for the given z (for example, in the observation 

(screen) plane z = zs). 
 

2.2 Spectral Method 

We represent the sought-for field U(x, y, z) in the from of a two-dimensional Fourier integral (a superposition of 
plane waves): 
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where kx and ky are the projections of the wave vector corresponding to a partial plane wave in the spatial spectrum F of 
the field. 

The complex amplitude defined by expression (3) must satisfy Helmholtz equation (1) at k = k0. Suffice it to 

require that the integrand F(kx, ky, z)expi(kxx + kyyy) should also satisfy this equation (by virtue of its being linear). 
Substituting this function into the Helmholzs equation for the homogeneous medium 
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The boundary condition for equation (5) is 

),,(),,( 00 yxzyx kkFzkkF 
  

where F0(ky, ky) is the spatial spectrum of the field U0(x, y) in the plane z = 0 (at the exit from the inhomogeneity): 
 

                                  .)(exp),(0),(0 dxdyyykxxkiyxUykxkF                                           (6) 

 
The general solution of equation (4) has the form 
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The coefficient C2 = 0 because there are no "reflected" waves in the half-space z > 0 free from wave sources. 
In that case, 
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where the factor 
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determines the phase incursion of each plane wave during its propagation from the plane z = 0 to the plane z = const. 
The function H(kx, ky, z) is sometimes referred to as the frequency characteristic of free space, with kx and ky being 
called space frequencies. 
 
2.3 Green Formula 

It frequently proves convenient to directly use the relationships between complex amplitudes – functions of 
coordinates – instead of spectral relation (3). 

The change-over from the spectral description 

 
                               ),(),(),( 0 yxyxyx kkHkkFkkF                                                    (9) 

 
to a field description can be achieved through convolution: 
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where the limits of integration are determined by the structure of the beam and h(x, y) is related to H(kx, ky) by the 
inverse Fourier transform: 
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where     .222 zyxR    

Relation (11) follows from the Weyl formula for the expansion of a spherical wave into plane waves: 
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Finally we get 
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We find the derivative with respect to z: 
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In conditions of a physical experiment, practically always R >> (wave zone), and so we can neglect the second 

term in parentheses to get 
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The value of U0(, ) at the exit from the inhomogeneity can be found in the phase screen approximation, 
provided that the spatial dependence of the refractive index, n(x, y), and the length of the inhomogeneity, l, are known. 
Let the field of the beam at the entry to the inhomogeneity be given by A(x, y). In that case, 
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Finally the field in the observation (screen) plane zs is 
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3 REFRACTOGRAM PROCESSING ALGORITHM 

The processing of refractopgrams in the domain of applicability of geometrical optics and in the Fresnel 
diffraction region involves problems associated with the need for substantial computational resources because of the 
presence of a fast oscillating function in the integrand. In this connection, a special algorithm has been developed to 
increase the computation speed. At the base of the algorithm are numerical integration techniques, specifically the 
rectangle (cell) method. 

Consider the double integral over the rectangle G(a  x  b,   y  ) (Fig.5). 

 
Fig. 5 Region of integration 

 
The integrand can approximately be replaced by its value at the central point of the rectangle. In that case, the 

integral is easy to compute: 
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To improve accuracy, the region can be divided into rectangular cells. Approximately computing the integral 

over each cell and denoting by Si and xi, yi the surface area and coordinates of the ith rectangle, respectively, we get 

 
                                  

G i
iii yxfSdxdyyxfI ).,(),(                                             (20) 

 
On the right-hand side there is an integral sum; consequently, for a continuous f(x, y) it converges to the value of 

the integral as the cell perimeters tend to zero. 
This method of integration has been implemented in the Delphi programming environment. The appearance of 

this program is presented in Fig. 6. 
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Fig. 6 Appearance of the "Refractogram" program 

 

The program contains three panels serving to enter (select) calculation data and to display the images of the 
structured laser radiation used and the refractogram obtained in the observation plane. The radiation at the entry to the 
inhomogeneity is described by formula (21): 
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where w1 and w2 stand for the dimension of the radiation along the x- and y-axes, respectively, and  is the slope of the 
laser plane. 

It is necessary to select the type of inhomgeneity. When one of the first three types of inhomogeneity is selected, 
there pops up a window serving to enter the inhomogeneity parameters (Fig. 7). 

 

Fig. 7 Inhomogeneity parameter selection window 

 
When selecting the fourth type of inhomogeneity that corresponds to a diffuse layer formed between two 

dissimilar liquids, the window shown in Fig. 8 pops up. 
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Fig. 8 Inhomogeneity parameter selection window 

 
It is also necessary to enter the distance at which the refraction pattern is observed, the integration steps and limits of 

integration, as well as the steps needed to graphically represent the data. 
 

4 RESULTS OF COMPUTER VISUALIZATION 

Starting data 

λ = 0.632810–3 mm; 
w1 = 30 mm; 
w2 = 0.5 mm. 

Results of Operation of the Program 

1) The law of variation of the refractive index is 
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where 
n1 = 1.3320 is the refractive index of the top layer; 
ys = 0 is the position of the center of the inhomogeneity; 
h = 2 mm is the half-width of the diffuse layer. 
 

a)  Form of refractogram as a function of the refractive index n2 of the bottom layer 

α = 0.5 is the laser plane slope; 
l = 5 mm is the length of the inhomogeneity. 
z = 3000 mm is the distance between the inhomogeneity and the screen. 

Radiation at the entry to the inhomogeneity has the form shown in Fig. 9. 

 

Fig. 9 Radiation at the entry to the inhomogeneity 
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n2 = 1.3330 n2 = 1.3340 n2 = 1.3350 n2 = 1.3360 

Fig. 10 Form of refractogram as a function of the refractive index n2 of the bottom layer 

 
b) Form of refractogram as a function of the distance z to the screen. 
α = 0.5;  
n2 = 1.3350. 
 
Radiation at the entry to the inhomogeneity has the form shown in Fig. 11. 

  

 

Fig. 11 Radiation at the entry to the inhomogeneity 

 

   
z = 1000 mm z = 1500 mm z = 2000 mm z = 2500 mm z = 3000 mm 

Fig. 12 Form of refractogram as a function of the position z of the screen 

 

2) The law of variation of the refractive index is 
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which corresponds to a cylindrical inhomogeneity with a negative refractive index gradient.; 
 l = alx = aly = 5 mm is the length of the inhomogeneity and its characteristic dimensions along the x- and y-axes; 
δn = 0,002 is the maximum relative change of the refractive index. 

 
The laser plane slope is α = 0. 
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Radiation at the entry to the inhomogeneity has the form shown in Fig. 13. 

 

 
Fig. 13 Radiation at the entry to the inhomogeneity 

(a) z = 500 mm (b) z = 750 mm (c) z = 1000 mm (d) z = 2000 mm 

  
(e) z = 3000 mm (f) z = 4000 mm (g) z = 5000 mm 

Fig. 14 Form of refractogram as a function of the position z of the screen 

 

   
δn = 0.001 δn = 0.0015 δn = 0.002 δn = 0.0025 δn = 0.003 

Fig. 15 Form of refractogram as a function of the maximum relative change n of the refractive index (z = 5000 mm) 

 

3) The law of variation of the refractive index is 
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which corresponds to a cylindrical inhomogeneity with a positive refractive index gradient. 

The starting data like in the previous case. 
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(a) z = 750 mm (b) z = 1000 mm (c) z = 1250 mm (d) z = 1500 mm 

Fig. 16 Form of refractogram as a function of the position z of the screen 

 

CONCLUSION 

The laser refractography technique possesses all the advantages characteristic of laser measurements. These 
merits include the remotability and practically inertialess character of measurements and the possibility of taking 
nonperturbative and microscopic measurements. Laser refractography can be used to monitor stationary and fast 
processes (including thermal processes in liquids, gases, and plasmas), natural convection in liquids in the vicinity of 
heated or cooled bodies, and the processes of mixing of various liquids in process vessels and to diagnose temperature 
fields in boundary layers in heating and cooling applications and the fields of other physical quantities affecting the 
index of refraction. 

The mathematical modeling of refraction patterns (refractograms) obtained in probing the media of interest with 
structured laser beams is a fundamental stage of quantitative diagnostics. 

Geometrical-optics models of refractograms have been used to solve inverse problems on the recovery of the 
refractive index, temperature, and salinity of various media. However, where complex ray patterns are present or caustic 
surfaces formed in the medium, or else where diffraction effects must be taken into consideration, the geometrical-
optics approach proves inconsistent, and so use should be made of wave methods. For this reason, the development of 
wave-equation-based refractogram processing algorithms is a high-priority task. The processing of refractopgrams in 
the domain of applicability of geometrical optics and in the Fresnel diffraction region involves problems associated with 
the need for substantial computational resources because of the presence of a fast oscillating function in the integrand. 

To calculate this integral is very laborious and takes much time. In this connection, we have developed a special 
algorithm that increases the computation speed in comparison with direct computations in the MathCAD environment. 
At the base of the algorithm are numerical integration techniques, specifically the rectangle method whereby the domain 
of integration is divided into rectangular cells and the integral is replaced by a sum, owing to which the refractogram 
construction speed has increased by more than ten times. 
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